

Toleranz und Passungen Übungen

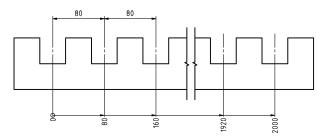
Übungen

1 Grenzabmaße

1.1 Ergänzen Sie die fehlenden Werte.

	N	ES / es	El / ei	G _o	G_{u}	Т
$56_{-0,055}^{}$						
80+0,12						
45 ^{+0,105}						
$40^{-0,045}_{-0,120}$						
280,25						

1.2 Für einen Wellendurchmesser d = 58mm sind die Grenzabmaße +21µm und -11µm angegeben. Bestimmen Sie die Maßtoleranz sowie das Höchstund Mindestmaß der Welle.

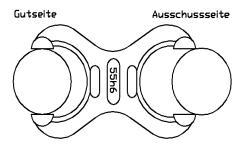

2 Allgemeintoleranzen

2.1 Ergänzen Sie die fehlenden Werte.

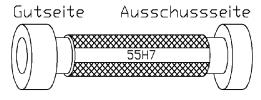
	N	ES/es	El/ei	G _o	Gu	Т
50 ISO 2768m						
30 ISO 2768f						
R5 ISO 2768c						
60° ISO 2768v						

Zeichnung für 60°

- 2.2 Welche Toleranz liegt für das Maß 2000mm vor, wenn Allgemeintoleranzen, Genauigkeitsgrad mittel, und die
- a) obere Bemaßung 25x80 mm
- b) untere Bemaßung 2000 mm in der Zeichnung eingetragen ist?


2.3 Wie stark darf eine Fläche 68x90mm² von der Ebenheit ISO 2768 K abweichen?

3 ISO-Toleranzkurzzeichen

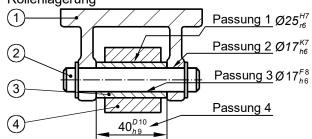

3.1 Ergänzen Sie die fehlenden Werte.

	N	ES / es	EI / ei	G _o	Gu	Т
15 ^{H11}						
15 _{h9}						
15 ^{H6}						
15 _{h6}						
15J6						
15j6						
30j6						
225 ^{r6}						

- 3.2 Welche Höchst- und Mindestmaße muss
- a) die Überprüfung einer Grenzrachenlehre auf der Gut- und Ausschussseite ergeben?

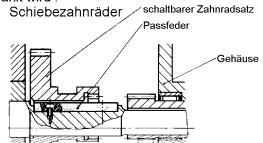
b) die Überprüfung eines Grenzlehrdorns auf der Gutund Ausschussseite ergeben ?

- c) In welcher Richtung dürfen die gemessenen Werte vom idealen Maß abweichen ?
- d) Welche Messgenauigkeit sollte das Messgerät zur Kalibration der Lehren haben?

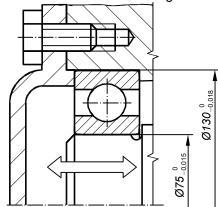


Toleranz und Passungen Übungen

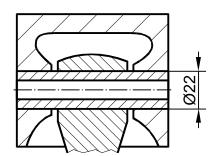
4 Passungen


4.1 Rollenlagerung

- a) Ordnen Sie die Teile den Positionsnummern zu: ... Bolzen, ... Halterung, ... Lagerschale, ... Rolle
- b) Zwischen welchen Teilen befindet sich
 Passung 1:
 Passung 2:
 Passung 3:
 Passung 4:
- d) Begründen Sie die Wahl der Passungssysteme
- e) Bestimmen Sie für alle Passungen der Rollenlagerung die Höchst- und Mindestmaße und die Höchst- und Mindestpassungen.


	Nabe		We	elle	Passung	
	ES	EI	es	ei	Рн	P_{M}
1)						
2)						
3)						
4)						

- f) Erklären Sie für jede Passung den Zusammenhang zwischen der Passungsart und der Funktion.
- g) Welche Teile drehen sich?
- h) Welche Aufgabe hat die Lagerschale?
- 4.2 Der verschiebbare Zahnradsatz und die Welle eines schaltbaren Getriebes sollen auf Maßhaltigkeit überprüft werden. Gefordert ist $\emptyset40_{77}^{H7}$
- a) Innerhalb welcher Maße müssen die Messwerte für die Welle und die Bohrung liegen?
- b) Bestimmen Sie die Mindest- und die Höchstpassung.
- c) Wie verändern sich in dem Beispiel die Werte der Passung, wenn für die Schieberäder eine Passung H8 gewählt wird?



a)	Nabe ∅40H7	ES	EI	G。	G u
	Welle Ø40f7	es	ei	G _o	G u
b)	Passung Ø40H7f7			Рм	
c)	Nabe ∅40H8	ES	EI	G。	G u
	Passung Ø40H8f7			P_{M}	

- 4.3 Die Messung der Istwerte vor der Montage eines Gleitlagers für die Arbeitsspindel einer Werkzeugmaschine ergab folgende Maße:
 - d_{Welle} = 49,989mm und $d_{Bohrung}$ = 50,018mm.
 - a) Welche Passung liegt mit diesen Messwerten vor?
 - b) Liegen die Messwerte im Toleranzfeld der vorgeschriebenen Passung $\varnothing 50_{a6}^{H7}$?
 - c) Welche Passung würden Sie auswählen, wenn statt des Passungssystems Einheitsbohrung aus Aufgabe b eine Passung nach dem Passungssystem Einheitswelle gefordert wäre?
- 4.4 Für ein Rillenkugellager gelten die Herstellerangaben im folgenden Bild.
 - a) Bestimmen Sie die Maßtoleranz sowie Höchst- und Mindestmaß für den Innen und Außendurchmesser des Kugellagers.
 - b) Wie groß sind Höchst- und Mindestpassung, wenn für die Welle d = 75_{k6} und das Gehäuse D = 130^{H7} gelten?
 - c) Beschreiben Sie die Funktion der Passungen.

- 4.5 Der Kolbenbolzen Ø22 soll nach der Montage eine Übermaßpassung mit dem Pleuel und eine Spielpassung mit Kolben erhalten.
 - a) Wählen Sie geeignete Passungen und berechnen Sie die erforderlichen Prüfwerte.
 - b) Wie kann die Montage und Demontage erfolgen?

Toleranz und Passungen Übungen

3

Lösungsvorschläge

Alle Maße ohne Einheiten sind in mm angeben.

1 Grenzabmaße

1.1	N	ES / es	El / ei	G。	Gu	Т
56 _{-0,055} ^{0,184}	56	0,184	-0,055	56,184	55,945	0,239
80+0,12	80	0,120	0,080	80,120	80,080	0,040
45 ^{+0,105}	45	0,105	0,000	45,105	45,000	0,105
$40^{-0,045}_{-0,120}$	40	-0,045	-0,120	39,955	39,880	0,075
$28_{-0,25}$	28	0,000	-0,250	28,000	27,750	0,250
1.2						
58_0,021	58	0,021	-0,011	58,021	57,989	0,032

2 Allgemeintoleranzen

2.1

Maße o.E. in [mm]	N	ES / es	El / ei	G。	Gu	Т
50 ISO 2768m	50	+0,3	-0,3	50,3	49,7	0,6
30 ISO 2768f	30	+0,1	-0,1	30,1	29,9	0,2
R5 ISO 2768c	5	+1	-1	6	4	2
60° ISO 2768v	60	+2°	-2°	62°	58°	4°

- 2.2 Erkenntnis: Kettenmaße verändern die Toleranzen und sollen deshalb nicht mit mehr als zwei Maßen zur Bemaßung verwendet werden. Eine Ausnahme liegt dann vor, wenn der Einzelabstand wichtiger ist als die Gesamtlänge, z.B. bei Fahrradketten.
- a) oben: $25 \times (80\pm0.3) \text{ mm} = 2000\pm7.5 \text{ mm}$ Die Toleranz beträgt also T = 15 mm.
- b) unten: $2000\pm1.2 \text{ mm} (\rightarrow \text{Toleranz T} = 2.4 \text{ mm})$
- 2.3 DIN ISO 2768 K legt die Allgemeintoleranzen für Form und Lage fest. Beispiele für Formtoleranzen sind Geradheit und Ebenheit, Beispiele für Lagetoleranzen Rechtwinkligkeit und Symmetrie.

Nach DIN ISO 2768 K hat die Fläche 68x90mm² eine Toleranz von T = 0,2 mm. Das bedeutet, dass die Fläche vollständig zwischen zwei parallelen Ebenen liegen muss, die einen Abstand von 0,2 mm haben.

ISO-Toleranzkurzzeichen

3.1	N	ES / es	El / ei	G _o	G _u	Т
15 ^{H11}	15	0,110	0,000	15,110	15,000	110 µm
15 _{h9}	15	0,000	-0,043	15,000	14,957	43 µm
15 ^{H6}	15	0,011	0,000	15,011	15,000	11 µm
15 _{h6}	15	0,000	-0,011	15,000	14,989	11 µm
15J6	15	0,006	-0,005	15,006	14,995	11 µm
15j6	15	0,008	-0,003	15,008	14,997	11 µm
30j6	30	0,009	-0,004	30,009	29,996	13 µm
225 ^{r6}	225	0,109	0,080	225,109	225,080	29 µm

3.	2	N	ES / es	El / ei	G _o	Gu	T
а) 55h6	55	0,000	-0,019	55,000	54,98	0,019
b) 55H7	55	0,300	0,000	55,030	55,000	0,030

- Grenzrachenlehre: Die Gutseite muss über den Prüfling gleiten
 - ightarrow sie darf kleiner sein und gute Teile aussortieren
 - \rightarrow sie darf aber nicht größer sein, weil sie sonst Ausschussteile akzeptiert
 - → Bei neuen Grenzrachenlehren ist die Gutseite etwas unter Maß, da auch Lehren abnutzen und sie so länger brauchbar bleiben. Die neue Lehren sollen übrigens in der Fertigung eingesetzt werden und erst in die Qualitätskontrolle wandern, wenn sie teilweise (!) abgenutzt sind. Andernfalls würde die Q-Kontrolle mit einer engeren Toleranz prüfen als die Fertigung und Teile beanstanden, die die Fertigung nicht finden kann.
 - Grenzlehrdorn: Die Gutseite muss in den Prüfling eindringen, sie darf größer sein. Die Ausschussseite darf kleiner sein.
- d) Kalibration ist das Überprüfen eines Prüfzeuges.
 Nach der goldenen Regel der Messtechnik (DIN 2257) soll die Messgenauigkeit u des Messgerätes 5..10mal kleiner sein als die Toleranz des Prüflings. In diesem Fall muss u bei etwa 2 bzw. 3µm liegen.

Toleranz und Passungen Übungen

4 Passungen

4.1

- a) Ordnen Sie die Teile den Positionsnummern zu:2 Bolzen, 1 Halterung, 3 Lagerschale, 4 Rolle
- b) Zwischen welchen Teilen befindet sich
 Passung 1: Pos 3 Lagerschale ↔ Pos 4 Rolle....
 Passung 2: Pos 1 Halterung ↔ Pos 2 Bolzen.....
 Passung 3: Pos 2 Bolzen ↔ Pos 3 Lagerschale.
 Passung 4: Pos 1 Halterung ↔ Pos 3 Lagersch.
- c) Welche Passungssysteme liegen vor am Bolzen : Einheitswelle (mit h6)......an der Rolle : Einheitsbohrung.....
- d) An der Rolle wird wie üblich Einheitsbohrung gewählt, weil man damit weniger Werkzeuge benötigt. Am Bolzen wurde ausnahmsweise Einheitswelle gewählt, weil mehrere Passungen auf der Welle sitzen und es problematisch ist, auf einer Achse mehrere verschiedene Toleranzen zu verwenden, wie es bei Einheitsbohrung nötig wäre.

	1	ı		, –			
e)	e) Nabe		We	elle	Passung		
		ES	EI	es	ei	Pн	P _M
1)	25H7r6	0,021	0,000	0,041	0,028	-0,007	-0,041
2)	17K7h6	0,006	-0,012	0,000	-0,011	0,017	-0,012
3)	17F8h6	0,043	0,016	0,000	-0,011	0,054	0,016
4)	40D10h9	0,180	0,080	0,000	-0,062	0,242	0,080

f) Passung 1 ist eine Übermaßpassung (veraltet: Presspassung), da 0 > P_H > P_M. → Rolle (4) und Lagerschale (3) verbindet ein fester Sitz.

Passung 3 ist eine Spielpassung, da P_H > P_M > 0.

→ Lagerschale (3) dreht sich auf dem Bolzen (2).

Passung 2 ist eine Übergangspassung, da P_H > 0 > P_M. → Bolzen (2) sitzt wahrscheinlich fest genug in Halterung (1), damit er sich nicht dreht, aber locker genug für eine problemlose Montage.

Passung 4 ist eine Spielpassung, damit sich Lagerschale (3) in Halterung (1) drehen kann.

4	.2

a)	Nabe	Es	Εı	G。	G _u
,	Ø40H7	+25µm	+0µm	40,025	40,000
	Welle	es	ei	G。	G _u
	Ø40f7	-25µm	-50µm	39,975	39,950
b)	Passung	$P_{H} = 25 \mu m - ($	(-50)µm =	$P_{\rm M} = 0 \mu m - (-25)$	5)µm =
,	Ø40H7f7	+75µm		+25µm	
c)	Nabe	Es	E _i	G。	G _u
,	Ø40H8	+39µm	0	40,039	40,000
	Passung	P _н = 39µm-((-50)µm=	$P_{\rm M} = 0 \mu m - (-25)$	5)μm= +25μm
	Ø40H8f7	+89µm			

- d) $P = d_{Bohrung} d_{Welle} = 50,018 \text{ mm} 49,989 \text{ mm}$ = +0,027 mm \rightarrow Spielpassung
- e) Ja:

 $d_{Bohrung}$ = 50,018 mm liegt in 50H7 (50,000..50,025) d_{Welle} = 49,989 mm liegt in 50g6 (49,975..49,991)

f) Gewählt: 50 G7/h6 (mit der Einheitswelle h6) Begründung: 50 G7/h6 und 50 H7/g6 haben die gleiche Höchst- und Mindestpassung $P_H = 34 \ \mu m - (-16 \ \mu m) = 50 \ \mu m$ $P_M = 9 \ \mu m = 0 \ \mu m = 9 \ \mu m$

4.3									
a)	N	ES/	es E	I / ei		G。		G _u	T
\emptyset 130 $^{+0,000}_{-0,018}$	130	0,0	00 -	0,018	130	0,000	12	9,982	0,018
$\emptyset 75^{+0,000}_{-0,015}$	75	0,0	00 -	0,015	7	5,000	7	4,985	0,015
b)		Inner	Innenmaß		Außenmaß			Passung	
		ES	EI	е	s	ei		P。	Pu
Gehäuse / Lager		0,040	0,00	0 0	000	-0,0	18	0,058	0,000
Lager / Welle		0,000	-0,01	5 0.	021	0,0	02	-0,002	-0,036

c) Der äußere Ring sitzt mit einer Spielpassung lose im Gehäuse. Diese Konstruktion ist nur möglich, wenn es sich um eine Punktlast handelt (z.B. wenn das Gehäuse und die Kraftrichtung stehen bleiben), weil sonst der Ring zum Wandern neigt.. Der innere Ring sitzt mit einer Übermaßpassung fest. Dies ist bei Umfangslasten nötig um Fressen zu verhindern.

Da beide Ringe axial fixiert sind (außen durch Bauteile, innen durch Passung, gegenseitig durch Rillen), handelt es sich um ein Festlager.

4.4

	Kolben / Pleu - el		Kolben	bolzen	Passung	
a)	ES	EI	es	ei	P。	Pu
Kolben / Bolzen Ø22 H7/h6	0,021	0,000	0,000	-0,013	0,044	0,000
Pleuel / Bolzen Ø22 R7/h6	-0,020	-0,041	0,000	-0,013	-0,007	-0,041

b) Kolben und Kolbenbolzen haben Spiel und können durch Schieben montiert und demontiert werden. Pleuel und Kolbenbolzen werden mit Gewalt (z.B. durch hydraulischen Druck) oder durch Schrumpfen (Kolbenbolzen kalt und/oder Pleuel heiß) montiert. Die Demontage kann nur durch Gewalt erfolgen