Kompaktlader

Aufgabe 1

1.1

1.2 Lageplan: \(M_L: 1\,\text{cm entspricht} \, 200\,\text{mm} \)

Kräfteplan: \(M_K: 1\,\text{cm entspricht} \, 1\,\text{kN} \)

\[\begin{align*}
\alpha &= 26^\circ \\
F_A &= 11,4\,\text{cm} \\
F_B &= 10,2\,\text{cm}
\end{align*} \]
1.3 Achtung die Lösung funktioniert ausschließlich über diesen Ansatz!

\[\sum F_x = 0: \quad F_B - F_{AX} = 0 \quad (1)\]

\[\sum F_y = 0: \quad F_{AY} - F_{G2} = 0 \quad (2)\]

\[\sum M_{A1} = 0: \quad F_B \cdot (1800 \, \text{mm} - 600 \, \text{mm}) - F_{G2} \cdot 2500 \, \text{mm} = 0 \quad (3)\]

\[\text{(2)} \rightarrow F_{AY} = F_{G2} = 5 \, \text{kN} \quad (4)\]

\[\text{(3)} \rightarrow F_B = \frac{F_{G2} \cdot 2500 \, \text{mm}}{1200 \, \text{mm}} = \frac{5 \, \text{kN} \cdot 2500 \, \text{mm}}{1200 \, \text{mm}} = 10.4 \, \text{kN} \quad (4)\]

\[\text{Pythagoras: } F_A = \sqrt{F_{AX}^2 + F_{AY}^2} = \sqrt{10.4^2 + 5^2} \, \text{kN} = 11.5 \, \text{kN}\]

\[\tan \alpha = \frac{F_{AX}}{F_{AY}} = \frac{5 \, \text{kN}}{10.4 \, \text{kN}} = 0.48 \rightarrow \alpha = 25.7^\circ\]

1.4 Freimachskeizze

1.5 \[\sum F_y = 0: \quad F_H + F_V - F_{G1} - F_{G2} = 0 \quad (1)\]

Drehmomentansatz um H:

\[\sum M(H) = 0: \quad -F_{G1} \cdot 300 \, \text{mm} + F_V \cdot 1200 \, \text{mm} - F_{G2} \cdot 2500 \, \text{mm} = 0 \quad (2)\]

\[\text{aus (2)}: \quad F_V = \frac{25 \, \text{kN} \cdot 300 \, \text{mm} + 5 \, \text{kN} \cdot 2500 \, \text{mm}}{1200 \, \text{mm}} = 16.67 \, \text{kN}\]

\[\text{(2) in (1)}: \quad F_H = F_{G1} + F_{G2} - F_V = 25 \, \text{kN} + 5 \, \text{kN} - 16.67 \, \text{kN} = 13.33 \, \text{kN}\]

oder: **Drehmomentansatz um V:**

\[\sum M(V) = 0: \quad F_{G1} \cdot 900 \, \text{mm} - F_H \cdot 1200 \, \text{mm} - F_{G2} \cdot 1300 \, \text{mm} = 0 \quad (3)\]

\[\text{aus (3)}: \quad F_H = \frac{25 \, \text{kN} \cdot 900 \, \text{mm} - 5 \, \text{kN} \cdot 1300 \, \text{mm}}{1200 \, \text{mm}} = 13.33 \, \text{kN}\]

\[\text{(3) in (1)}: \quad F_V = F_{G1} + F_{G2} - F_H = 25 \, \text{kN} + 5 \, \text{kN} - 13.33 \, \text{kN} = 16.67 \, \text{kN}\]

1.6 Kompaktlader kippt: Sonderfall \(F_H = 0\)

\[\sum M(V) = 0 = F_{G1} \cdot l_1 - F_{G2_{\text{max}}} \cdot (l_4 - l_1 - l_2)\]

\[F_{G2_{\text{max}}} = \frac{25 \, \text{kN} \cdot 900 \, \text{mm}}{2500 \, \text{mm} - 300 \, \text{mm} - 900 \, \text{mm}} = 17.3 \, \text{kN}\]

Das Eintragen der Längenmaße in die Freimachskeizze erleichtert das Aufstellen der Gleichungen!